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Gain and recombination dynamics in photodetectors made with quantum nanostructures:

The quantum dot in a well and the quantum well
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We consider the problem of charge transport and recombination in semiconductor quantum well infrared
photodetectors and quantum-dot-in-a-well infrared detectors. The photoexcited carrier relaxation is calculated
using rigorous random-walk and diffusion methods, which take into account the finiteness of recombination
cross sections, and if necessary the memory of the carrier generation point. In the present application, bias
fields are high and it is sufficient to consider the drift limited regime. The photoconductive gain is discussed in
a quantum-mechanical language, making it more transparent, especially with regard to understanding the bias
and temperature dependence. Comparing experiment and theory, we can estimate the respective recombination
times. The method developed here applies equally well to nanopillar structures, provided account is taken of
changes in mobility and trapping. Finally, we also derive formulas for the photocurrent time decays, which in

a clean system at high bias are sums of two exponentials.
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I. INTRODUCTION

In a previous paper, we considered the problem of gain in
quantum-dot infrared photodetector (QDIP) devices.! In this
paper, we continue the analysis and consider a well estab-
lished quantum well infrared photodetector (QWIP) (Ref. 2)
structure and a related quantum dot/quantum well infrared
photodetector (QDWIP). The two device structures are
shown in Fig. 1. The QDWIP detectors are based on
InAs/Ing s3Gag 47As/Ing s5Alg4gAs  structures  and  differ
strongly from both typical QDIPs and dot in a well detectors
because the band offset between the InAs quantum dot (QD)
and the InGaAs quantum well (QW) is only about 100 meV
giving rise to one to two shallow bound states in the QD.
These devices are a hybrid between the traditional QWIP and
QDIP technologies and their performance is discussed in de-
tail in Ref. 3. The InAs/InGaAs/InAlAs type QDWIPs with
InP injection contacts have been reported in Ref. 3. QWIPs
with the same material but with an InGaAs injection contact
have been reported recently in Ref. 4. QD in a well devices
with deeper bound states using In, ;5Gag gsAs have been con-
sidered, for example, in Refs. 5 and 6.

In this paper, we present a more general and a more
quantum-mechanical approach to the problem of gain than
what is typical in the literature. The dynamics of recombina-
tion in QWIPs (Refs. 7-11) are treated using a rate equation
approach. The theory derived here is equally applicable to
e-beam fabricated nanopillars of semiconductors,'? superlat-
tices of type I and type II materials, and nanowires. The
traditional QDIP class of device requires a different method-
ology, as shown in Ref. 1.

Because they are based on rigorous random-walk theory,
the methods we develop here and in a previous paper dealing
with QDIPs (Ref. 1) are well suited to nanostructures in gen-
eral. For the purpose of understanding gain in QW physics,
one can think in terms of individual wells and barrier regions
that are connected to each other. The total system is then
built up from individual building blocks, which although
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interacting, preserves some of their own identity. Starting
from each unit, one can see how the coupling gives rise to
the overall properties of the system. The states in the plane of
the QW can be treated as effective-mass plane wavelike, and
superlattices can then be treated like a quasi-one-dimensional
Kronig-Penney model. The same holds true for QWIP
nanopillars'> and QD layers buried in QW layers.3

We begin in Sec. II by defining the basic quantities that
enter the analysis of the photoconductivity and gain. Then in

(a)

SI- InP substrate

(b)

0.5 um-n-InP contact (n=3x108 cm=3)

3.5 nm-GalnAs QW

InAs QD

:-E—:}”s

1 um-n-InP contact (n=3x10¢ cm)

0.5 pm-InP buffer

SI-InP substrate

FIG. 1. (Color online) Schematic structures of (a) the QWIP and
(b) the QDWIP.
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Sec. III, we consider the problem of recombination using
discretized diffusion theory (rate equations). In Sec. IV, we
specialize to the drift regime, which is the most common
situation in experiment. Here we touch upon the usual semi-
classical results for the gain. The effect of traps is included in
Sec. V. In Sec. VI we compare our theory with experiment
and discuss the limitations of the generation-recombination
(GR) noise formulation. Finally in Sec. VII, we consider the
photocurrent and time dependence of the photocurrent decay.
The summary and conclusions are presented in Sec. VIIIL.

The results can be summarized as follows: (1) A simple
formula for the photoconductive gain as a function of bias
and temperature, which includes trapping and velocity satu-
ration in the drift limited regime; (2) The time decay of the
pulsed photoconductivity in QWIP and QDWIPs; (3) Com-
parison with experiment and the conclusion/observation that
the noise in the saturated velocity regime is most likely due
to hot carrier phonon emission and intervalley crossing
rather than generation-recombination noise. Although Monte
Carlo work!>!* has clearly demonstrated that these mecha-
nisms are the cause of velocity saturation, the corresponding
noise caused by time-dependent space-charge effects has not
been evaluated. We suggest that this mechanism dominates
the noise at high bias. Using only the generation-
recombination formula leads to absurdly high values of gain
in these devices.

II. BASIC QUANTITIES

Let us start with some definitions. The trap limited band
drift velocity v, can be written in a form that includes both
the hot carrier saturation at high fields and the trapping,'

Ud_1+EWbl(l—nl) 1+(M)2 2
; Wi Vs

where u is the pure ordered band mobility, F the electric
field, W, is the trapping rate from a free band state “b” to a
trap state “/,” Wy, is the detrapping rate from / to b, v, is the
saturation velocity, and n; is the occupation probability of the
trap state /. The gain g is here defined as the ratio of recom-
bination time to transit time,

LG,

g (2)

where L is the device length and C,, is the inverse carrier
recombination time from a free band state b to a capturing
level “e.” When the carrier has a problem getting into the
device because there is a high injection barrier, then the sys-
tem will have a low gain. The injection barrier or other dark
current barriers serve to lengthen the transit time. The band
mobility in Eq. (1) on the other hand includes only the trap-
ping processes in the barrier layers (conduction band and
electron transport only). Here it is assumed that the injection
time is negligible. If this is not the case, then it should be
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included as an additional resistance. The responsivity R is
normally written as

e
R=—ng, 3
P (3)

where 7 is the internal quantum efficiency (QE), w is the
light frequency, and e is the magnitude of the charge.

The internal QE is itself proportional to the absorbance
aL or, more generally, {1 —exp[—aL]} multiplied by the es-
cape probability out of the photoexcited state into the con-
tinuum band,

W eb
_ 1 —expl— a l s 4
7 ng ng{ p[ ]} ( )

where W, is the total escape rate out of the excited state into
the continuum and includes all the pathways out,! and W, is
the recombination rate back down into the lower QD levels.
This process may be a multistep process. For the temperature
and field dependence of R, the proximity of the extended
state to the continuum is critical. !>

Let us now consider the carrier dynamics from a time-
dependent point of view and consider the noise in a photo-
detector. When the noise in the structure is dominated by GR
noise,'® then the measured noise current 7, is related to the
gain g via the dark current I, through the equation,

I,=\4elpgAv, (5)

where e is electron charge and Av is the frequency band.'® In
a real QDIP system, for example, that in Ref. 1, one normally
finds that the measured noise is more complex. At very low
bias, the noise is frequency dependent and behaves as 1/f
noise. Then as we go up in frequency, and depending on the
quality of the QDIP layers, the noise behavior becomes con-
stant in frequency, which is a sign that we have reached the
GR white noise situation. At very high bias, the carrier ve-
locity saturates due to optic phonon emission and intervalley
crossing.”*14 For the AllnAs barriers, the I" to L and X ener-
gies are roughly 0.13 and 0.2 eV, respectively. In this limit,
we expect the GR noise to disappear and the intervalley scat-
tering induced space-charge noise and optic phonon emission
hot carrier noise (an extension of Johnson noise)'” to take
over. The experimental results indicate that there is only a
small range of biases over which we can talk about GR noise
dominating. The problem at high bias was pointed out by
Levine.® One of the objectives of this paper is to identify and
model the GR noise gain region. To do this, let us start by
opening with the problem of carrier recombination in a
QWIP-like structure.

III. CALCULATION CONCEPT IN THE QWIP OR QWIP
NANOPILLARS

The equation guiding the dynamics of charge carriers
in a semiconductor is the usual diffusion recombination
equation,'3-20
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on(r,t on(r,t
nir,t) =G(r,t)+ DV?n(r,t) + (1)
ot ox

- E n(r,))V(r—r;), (6)

:u“bF X

where G(r,1) is the local carrier generation rate, D is the
diffusivity, V(r) is the capture potential, and n(r,t) is the
carrier density at point r and time . The diffusion recombi-
nation equation in a discrete form suitable for a superlattice
is

dn(t

Li ) =G;- 2/: n(t)Wy + 21: n()Wy - 2} dem (1), (7)
where ¢g; are the recombination rates at site /, W is the diffu-
sion rate, and n; is the occupation density at site /.

In a multilayer QWIP, semiconductors such as GaAs/
AlAs or InGaAs/InP, for example, as discussed in Ref. §, one
has to deal with a quasi-one-dimensional diffusion and re-
combination problem. One can identify the “diffusion sites”
with finite extended “regions” so that, for example, the site
“A” is the quantum well region with length a and site “B” is
the barrier layer with length b, as follows:

b=ma. (8)

As a special case m can be an integer. The m=1 limit is the
simple A-B-A-B... one-dimensional (1D) alloy problem in
the analogous quantum-mechanical problem. So one can use
the same methodologies and solve the analogous tight-
binding model.

An “A” layer (QW) has a ground state “g” and an excited
state e, which may or may not be in the region of the free
band state, see Fig. 1(a). Let us assume first that the state e is
a free (band) continuum state. Then it follows that the barrier
layer B only has free band states (no recombination) and
possible trapping and detrapping centers within the ensuing
band trajectory. From the state e in the well region A, the
carrier can only recombine into the ground state g, or transfer
into the bandlike state in the barrier region B with rate Wyp.

In the other case, the excited level e is also bound. Then it
follows that the carrier in e can recombine into the ground
state or escape into the barrier as before, but now it can also
excite up vertically into the continuum.

The carrier dynamics in a QWIP nanopillar obey essen-
tially the same dynamic except that the kIl states are now the
discrete box eigenstates. The real difference is the mobility
along the pillar w,, which is likely to be subject to many
more surface traps than the mobility in a bulk QWIP u,,. We
can take this into account using the trapping function as dis-
cussed later.

The situation of the QD in QW can in most cases of
interest be treated like a QWIP because when the carrier falls
into the QW, it falls first into the QW excited state. It does
not really matter how far the excited-state trap is from an
actual QD recombination level. This is because the time to
escape from the QW is usually much longer than the time it
takes to relax deeper into the well and find a deeper state.
Capture into excited states from which the carrier can escape
again before recombining, and which are therefore number
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conserving, can be treated as traps and can be included in the
mobility, as will be shown later in Eq. (27). Trapping levels
lead to an overall increase in the band transit time, which
may be bias and temperature dependent as in Eq. (27). Thus
the QD in QW, the QWIP, and the QWIP-nanopillar prob-
lems differ by the value of the recombination parameters, the
density-of-states structure, and the trapping delay function.
There could be of course also other effects such as the
strength of the electron-phonon couplings or polaron energy
shifts, but these are secondary effects in this theory and are
subject to a different line of investigation.

Let us now consider a superlattice with A (QW) and B
(barrier) regions. If the excited level in A is free and continu-
ously joins the band in the barrier region B, then we can put
Wyp=Wgs=W, in field direction W*=(1+ )W, and in op-
posite direction W™= (1 - ;) W; with pp=eaF/2k,T. One can
connect the domain transfer rate W to the usual diffusivity
via WaZ:Wia?:D, where q; is the atomic lattice length, a is
the width of the region A, and W; is the corresponding site to
site random-walk jump rate. The W can be related to the
band mobility as shown below. The capture process, and then
recombination, is described by the combined rate &,.

The occupation probability of the carriers ny(t) or ng(z)
obey the standard rate equation in Eq. (7). Assuming the
carrier started at “/” at time =0, then the probability of
finding it on “j” at time ¢ is given by n;(t) or n(k,?) in the
Fourier space.

In p-Laplace space we have, given that the particle started
on a domain A or B, the survival fraction nA,B(p,k;p:O;k
=0). We solve the A-B one-dimensional lattice problem for
the situation m=1 so that a=b, for the special case that the
length of the QW region is the same as the length of the
barrier region. The problem is analogous to the 1D tight-
binding m*=0.085m,, alloy, where W plays the role of the
orbital overlap and ¢, the local orbital energies.

We find, assuming that the carrier started at a site B at ¢
=0, the exact solution,

”E:O@)
pres+ W+ W
p+es+W+W)p+eg+ W+ W) —(W+ W)
9

W+ W~
A B
Mo = ”Ezo{p W W e, } (10)

The survival fraction in the Laplace p-space, which will give
us the time dependence, is the sum of the two terms,

np(p) =1y p+ Mg (11)
ng(p)
_ pHe +2(Wr+ W)
T (pHes W W) (pHeg+ WA W) = (W + W)
(12)
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ng(p=0)=1g
g +2(WH+ W)
T (gt WA W) (sp+ W W) — (W W2
(13)

The solution for A is similarly obtained. The p=0 limit in
Eq. (13) gives us the average recombination time 75, which
is what we need to evaluate the gain. Unfortunately, the exact
result is not easily generalized analytically to the situation of
arbitrary b with b=ma and electric bias. The exact result for
m=2 is given in the Appendix.

IV. SOLUTIONS IN THE PURE DRIFT REGIME
A. Pure drift exact results for the probability

In the limit of pure drift, the carrier never goes back and
has no memory of previous sites. The result is simple, and
the recombination time exactly solvable for any quasi-one-
dimensional situation, even with arbitrary disorder of both
recombination and transfer rates in every well. The reason is
that if n;(p) is defined as the time Laplace or Fourier trans-
form of the probability of going from i to j having started at
t=0 at i, n;;(p) has no back diffusion terms in pure drift, i.e.,

[ : 18,19
W~==0, and is a simple product,"®

8 1 1

L + Wi,
pte+W), pt+e +W), pte,+Wy

ny(p) = + ...

(14)

If there is no recombination at all on the B sites, =0, and
the drift velocity is given by vp,=W"a, we have (pure drift)
from Eq. (13),

g +2(WH 2 1
s B LA A A

. 15
W+8A €4 W+ ( )

ng(k=0,p=0)=75=

On the other hand, if the particle starts at A, then we have the
exact result,

na(p) = Giy 4 + Gy, (16)
na(p=0)=14
B eg+2(WH+ W)
T (e + W W) (eg+ W+ WD) = (WH+ W)Y
(17)

nA(sz)erzi. (18)
€A

In other words, if the particle starts at A, it does not need to

move to recombine, but from B, it clearly has to move at

least one step.

We now allow the barrier layer to be thicker than the well
region. The barrier thickness b=ma is the interval of sites
from A to A (one well to the next well). Now only 1/(m
+1) of all sites are A sites, i.e., recombination sites, then the
result of Eq. (18) is easily generalized and becomes
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1 m+1
na(p=0,x)=—= , (19)
TA €a
when starting at A, and
+1
nB(p:O,b=ma)=7'B=m +ﬂ, (20)
€p W+

when starting at B. The first term is the recombination term
and is the inverse of the fraction of time the carrier is occu-
pying a trap, multiplied by the trapping rate. The second term
is the time to reach the first trap.

B. Gain in the drift limited regime

The limit of pure drift is extreme and it is reasonable to
replace in Eq. (20),

Y 1)
a

The band drift velocity can be trap limited and can be subject
to velocity saturation as given by Eq. (1).
The gain is then by definition

g ,u(sz)F{m+1 am}
s, AP RT AR

§= v L er vy
m+1
- $ 20 (22)
aN(m+1)| g4 Uy

where L=N(m+1)a and N is the number of repeat periods.
The second term would not be there if the carrier is assumed
to start its journey at A. Note that if we included the time to
travel to the middle of the A (quantum well), as in classical
physics, then the second term would also be (m+1) and not
m. Equation (22) implies that as soon as the transit time per
repeat unit of the superlattice (SL) is shorter than the capture
rate, the constant gain is controlled by the capture/
recombination rate and grows with the drift velocity. If the
drift velocity is linear in bias V, then so is the gain. On the
other hand, if the drift is trap controlled, then it can rise up
faster than V, as will be discussed later under the assumption
of a constant value of g,. If the capture rate decreases with
bias, as shown in the Monte Carlo work of Refs. 13 and 14 at
high biases, then the increase in gain with bias can be even
stronger. The problem, however, is that the noise, we believe,
is no longer dominated by GR processes at high biases. We
suggest that in the saturation regime hot electron processes
determine the noise. This idea needs detailed theoretical con-
sideration, which is beyond the scope of this paper. It seems
intuitive though that at high bias carrier velocities are only
defined up to an optic phonon energy of ~30 meV and
slowed down carriers trapped in X-L valleys will seriously
disturb newly arriving carriers until they themselves relax
back down into I'. We will come back to this point later in
the paper.

In the papers by Beck,?! Liu,>> Choi,?® and Levine et al.,?
one used a semiclassical description and wrote for the gain g,
again defined as the ratio of recombination to transit time,
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11-p.
g==—", (23)
N p.
pe=1-exp(=t,/my), (24)

where 1, is the transit time across one period and 7 is the
recombination time from an extended state back into the
well. When 1, < Ty, wWe have

P
where N-t, is just the total transit time, and Eq. (25) is the
familiar result if the carrier starts its journey from the quan-
tum well with 1/7,=¢4 and t,=a/uF.

Equation (25) has a quantum-mechanical definition. It is
the ratio of the effective recombination time from an excited
extended state to the ground state to the transit time. It in-
volves therefore the quantum-mechanical mobility. Here we
are not counting the time it takes to cross the well itself since
it is considered to be one coherent eigenstate.

The present derivations in Eq. (22) agree with the usual
result in this limit but they are more general, see the Appen-
dix for m=2. In particular, they show that, for small applied
fields, diffusion can play an important role. The present
method also gives us the time dependence of the carrier re-
combination kinetic [see Egs. (19) and (20)].

When t,> 1y, then Ref. 23 predicts

e—tp/ Ty

1

g~ = ek, (26)
a result which is purely classical and not verified in this
formalism. It says that the gain decreases exponentially as
the drift slows down or alternatively as the recombination
rate increases.

V. BEHAVIOR OF TRAPS
A. Case when the band mobility is trap limited

The band mobility can and will in general be limited by
trapping in randomly positioned defects and even the QW
excited states themselves. As long as the particle escapes
again, the defect acts only as a trap. There are of course
many different way to treating the trapping function depend-
ing on the trap. One elegant way, which encompasses many
scenarios, is to treat the escape process as a sum of paths that
span the direct vertical thermal path to the pure adiabatic
Fowler Nordheim limit."

The mobility function to be inserted into Eq. (1) is

12

312
e_Etc/kT_ e—ng /eFaOe—ng eeFaO/kT
Mo 12
1= e—QElc eeFaO/kT (27)
® o EKT _ y=SE IeFag,=sE yeFagkT |
X+ 12
1- e—SEtC eeFaO/kT

and this gives the trap and saturation limited drift velocity in
the barrier layers,
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mF
Vg= P (28)
F\2]12
1+(Mo )
US
where s=ag(2m,/#*)"> and a, the lattice constant

~0.5 nm, and we have used =[ W, (1-n;)/p+W;,] as the
inverse of the path sum shown in the curly brackets in Eq.
(27). Also, E,, is the trap energy measured with respect to the
conduction band, u is the pure trap free band mobility, and
x is the volume trap concentration. There may also be distri-
butions of trap energies, in particular when we have nanopil-
lars or nanowires with incomplete passivation of surface
states. In this case, one has to carry out another average over
Eq. (27). The form in Eq. (27) is a good starting point for
fitting data, but many other trap functions can be used de-
pending on the nature of the trap. Accurate information on
the trapping process and trap energy distributions and escape
can only be obtained by looking at the time decay of the
photocurrent. Such experiments are however scarce to come
by in QWIPs.

B. Capture step

Under the assumption that the carrier re-emission rate
from the excited state back to the band W, is slow compared
to the recombination rate to the ground state W,,, it follows
that the entire recombination process denoted by g4, is, in
general, a combined process of capture with rate W,, and
then recombination from the excited state to the ground state
W, We can write 1/e4=1/W,,+1/W,,. The capture step
is in reality one which involves a three-dimensional (3D)
extended conduction-band state falling into a semiextended
two-dimensional (2D) eigenstate. In the absence of momen-
tum scattering in the (x,y) plane, we can assume that the k
state in the plane does not change.

C. Band motion in the plane of the QW with traps

In the drift limited regime and in a very high quality sys-
tem, the carrier recombination is controlled by the motion in
the z direction. However, as the bias is lowered, and/or the
defect density increases, recombination can become diffu-
sion controlled and this will also involve the motion in the
QW plane. The general quasi-3D case with m=1 has been
treated theoretically in Ref. 24 in some detail. We recall that
the diffusion controlled decay with deep traps of concentra-
tion n, in 2D systems, with in-plane diffusivity D, and radius
R, in 2D, follows a long-time decay law of the form,

—( n,RoyDyt \ '
n(rqw’ZJ) -~ exp|:_ 2\’7T<M> :|nz(t)- (29)
a

The zero-bias survival fraction in z direction is n,, for gen-
eral values of barrier width m, is given by the solution of the
diffusion/Kronig-Penney model. The zero-bias relaxation dy-
namic in a superlattice is discussed in Ref. 24.

VI. CALCULATION AND MEASUREMENT OF THE GAIN

We now have enough information to plot the gain as
given by Egs. (2) or (22) in various scenarios. The capture
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FIG. 2. (Color online) Theoretically calculated gain as a func-
tion of a bias with a=5 nm, m=6, N=25, m*=0.085m, and v,
=1.0X10% cm/s, assuming no traps, (a) for different u, with &,
=50x10"" s7' and (b) for different e, with uy=1.0
X 10* em?/V s.

rate g4, the band mobility w,, the volume trap concentration
x, and the trap energy E,. are fit parameters. The rest are
known parameters. Figure 2 presents plots of the calculated
gain as a function of bias from Eq. (22) for the pure drift
limit with a=5 nm, m=6, N=25, m*=0.085m,, and v,
=1.0Xx10% cm/s, assuming no traps and v, taken from Eq.
(1). Figure 2(a) is a plot for different values of uq with g4
=5.0x10" s,

The works in Refs. 13 and 14 shows that the capture rate
g4 can be assumed a constant with bias until we have very
high biases. They also show that capture rate is strongly well
width dependent going up with a in our parameters. Because
the QD layer serves as an additional active region, the QD-
WIP will have a capture rate 3~4 times as large as the
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FIG. 3. (Color online) Theoretical evaluation of the trap effects
for gains at T=150 K with a=5 nm, m=6, N=25, m*=0.085m,
v,=1.0x10% ecm/s,  we=1.0X10* cm?/V's, and &,=5.0
X 10" s71, (a) for different x with E,.=0.10 eV and (b) for differ-
ent E,. with x=0.002.

QWIP with otherwise the same parameters. Figure 2(b)
shows the calculated gain for different &, with uy=1.0
X 10* cm?/V s.

Figure 3 depicts the effects of trapping on the gain. With
Ho=1.0x10* cm?/V s, £,=5.0x10'"" 57!, and ay=0.5 nm,
Fig. 3(a) is a plot of gain for different values of the trap
concentration “x” with E,.=0.10 eV and; Fig. 3(b) is for
different E,. with x=0.002 at T7=150 K. The trapping effects
are temperature dependent. Figure 4 is a corresponding plot
for different values of E,. with x=0.002 at 7=150, 200, and
250 K. It is clearly seen that the effect of trapping becomes
weak as we go up in temperature.

Let us now consider the experimental gain extracted from
the GR noise formula. The device structures for QWIP and
QDWIP samples are shown in Figs. 1(a) and 1(b), and the
fabrication procedures are as explained in Ref. 3. From the
fabricated devices, dark and noise current are measured, and
gain plots are obtained using Eq. (5). Figure 5 is a plot of the
gain as a function of bias V extracted from an InGaAs/
InAlAs (3.5 nm) QWIP at 7=120 and 150 K.

The gain extracted using Eq. (5) around zero bias is an
artifact because the noise curve remains bias independent in
this limit at low temperatures below 7=150 K, whereas the
dark current depends on bias as can be seen in Fig. 6. The
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FIG. 4. (Color online) Temperature dependence of the theoreti-
cally calculated gain with a=5 nm, m=6, N=25, m*=0.085m,,
v,=1.0X10% cm/s, py=1.0x10* cm?/V's, g4=5.0x 10" 7! x
=0.002, and E,.=0.10 eV.

fact that the noise current does not rise with the dark current
in this regime suggests that it is not GR limited and therefore
the GR noise formula should not really be used in this volt-
age range. Johnson noise can be bias independent and is

Gain

Bias (V)

FIG. 5. (Color online) Plot of the gain in the InAlAs/InGaAs
QWIP as a function of a bias obtained from the experimental
results.
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(A

Dark Current

Bias (V)

FIG. 6. (Color online) Dark current in the InAlAs/InGaAs
QWIP.

probably the reason for this noise behavior at low bias and
low temperatures. On the other hand, as we increase the bias,
the noise becomes bias dependent and the gain starts to be-
have in a sensible manner and increases toward a high value
of ten and higher. The dark current is saturating with bias, as
shown in Fig. 6, but the noise (not shown) is not. In the high
bias region, it is expected that the noise is dominated by hot
carrier phonon emission and intervalley scattering, a gener-
alization of Johnson noise with local space-charge oscilla-
tions and is no longer limited by GR noise. Equation (5)
becomes invalid in this limit. As a consequence, the ex-
tracted high gain at high bias is unrealistic. This high gain
will be discussed again later.

The temperature dependence of the gain in QWIP was
also checked. However, because the dark current is too low
or the noise is too high or unstable, most of the data seems to
be meaningless. So, only the results at 120 and 150 K are
shown in Fig. 5.

Figure 7 is the corresponding data for a QDWIP whose
structure is shown in Fig. 1(b). The growth conditions of the
QD layers are slightly modified from those discussed in Ref.
3, and the data presented in Fig. 7 is the best data to date.

Gain

MAMAL s R
T T T T T T T T T T

5 -4 3 -2 A 0
Bias (V)

FIG. 7. (Color online) Plot of the gain in the InAlAs/InGaAs-
QW/InAs-QD QDWIP as a function of a bias obtained from the
experimental results.
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Dark current (A)

Bias (V)

FIG. 8. (Color online) Dark current in the InAlAs/InGaAs-QW/
InAs-QD QDWIP.

Figure 8 is a plot of the dark current measured in the QDWIP
for several temperatures. Extremely high gain appears again
around zero bias and also in the high bias region. Both these
limits are unrealistic for the same reasons as in the QWIP.
The gain in the physically sensible region of bias, at roughly
-2 V, is lower in the QDWIP by a factor of 4. For example,
at =2 V, the gain reaches roughly 4 in the QWIP, on the
other hand, the gain keeps staying less than 1 in the QDWIP.
This is consistent with the fact that the width of the active
region is now ~2 nm larger, as shown by the Monte Carlo
work in Refs. 13 and 14. In addition, one expects that the QD
layers have added additional pathways for capture and re-
combination.

Figure 9 is a fit of the QWIP data. It is assumed that the
QWIP is of good crystal quality and that there are no traps.
This implies that the gain curve has no dependency on tem-
perature (apart from what might be due to the saturation
velocity). The fit curve in Fig. 9 is obtained using v,=1.0
X108 ecm/s,  pp=0.10X10* cm?/V's, and &,=3.5
x 10" s71,

Figure 10(a) is a fit to the QDWIP data. In this case, the
effects of traps are taken into account, the fit parameters are

12 v v v — —
l| \ T T " T Il T ’l l]l | ll| l]
11 || ! 1 S
] 1
10 Lo | ‘l " l' Vot i
Vo | L . | o®
Ve 1 o/ I
[ 1
o 1 \ r V!
81 v ! Lo ! b
\ I n Im
1 . \"/ 'y
£ 6 N\ ! b i
© < I
o i | ] !
i F !
4 \ ! ! _
\ / [ ]
- I. II -
5 e - =— Experimental (T = 120 K)
e | — = Experimental (T = 150 K)
/
° Calculated
~ |
T 1

Bias (V)

FIG. 9. (Color online) Fitting result for the QWIP gain with a
=5 nm, m=6, N=25, m*=0.085m, v,=1.0X 108 cm/s, 1o=0.10
X 10* cm?/V s, and £4=3.5X 10" 71,
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- -4 - Experimental (T = 150 K)
- -v- - Experimental (T = 200 K)
Experimental (T = 250 K)
- — - Calculated (T = 150 K)
- - —Calculated (T = 200 K)
Calculated (T = 250 K)
—— Calculated with bias dependent capture rate (T = 150 K)
Calculated with bias dependent capture rate (T = 200 K)
Calculated with bias dependent capture rate (T = 250 K)

25 T T T T T T T
2.0 1
250 K

200 K

150 K

Bias (V)

FIG. 10. (Color online) Fitting result for the QDWIP gain with
a=5 nm, m=6, N=25, m*=0.085m,, v,=1.0X10% cm/s, uq
=0.10X 10* cm?/V's, £,=2.0x10"2 s7!, x=0.004, and E,
=0.13 eV. The dashed lines show the fitting without effect of de-
creasing €, due to the bias. The solid lines show the fitting with the
effect included.

v,=1.0X10% cm/s,  ue=0.10X10* cm?>/V's, g,=2.0
X 10'? 57!, x=0.004, and E,.=0.13 eV. For T=200 and 250
K, the fit results look good up to V=2 V.

Above 2 V, the experimentally extracted gain rises above
the theory fit curve. The work in Refs. 13 and 14 shows that
the capture rate can be assumed to be constant under low
electric field, but it starts decreasing above a certain value of
electric field. The electric field at which the capture rate
starts decreasing corresponds to roughly 2 V for our device
dimension. Using the Monte Carlo derived function from
Refs. 13 and 14, we find that the fit is slightly improved as
shown in Fig. 10(b). Although decreasing the capture rate
could be one of the reasons for the higher gain, this mecha-
nism on its own does not explain the discrepancy at high
gain. The reason is most likely the different noise mecha-
nism.

To understand the high values of the gain in Figs. 5 and 7,
one should consider that the dark current has saturated at V
=2 V but the noise has not. So Eq. (5) gives a gain that is
increasing with bias. But this implies that another source of
noise is taking over, which is not GR noise but it has to do
with hot carriers. At velocity saturation, the standard formu-
lations of noise no longer apply. From Figs. 6 and 8, one can
see that I, has saturated at V=2 V but the power is IV and is
still going up. The carriers are emitting optic phonons or
jump into to a slower velocity upper valley every time they
reach the “right” energy. The Monte Carlo work in Ref. 14
clearly shows that this is happening, but the authors have not
calculated the corresponding noise. A full Monte Carlo
analysis that includes the time-dependent space-charge fluc-
tuations and carrier velocity noise caused by optic phonon
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emission would be useful. In a real device, this is further
enhanced by percolation effects caused by pinholes, i.e., spa-
tially restricted low resistance pathways.

It is also an interesting point to note in the QWIP results
that the gain exceeds 1 and reaches values of 2~5 at V
=-2 V. This is considered to be still a reasonable regime
although larger than the value reported in Ref. 4. In fact, this
range of gain is still, in principle, possible as shown by our
calculations. However, the gain g=2 means that the carriers
can “fly” a distance twice as long as the length of the active
region, and this implies in our case that the carriers cross the
QWs 50 times before recombining. The crossing of the well
region does slightly lower the effective band mobility.

In the QDWIP results, on the other hand, the gain is less
than 1 around V==*=2 V. When g=0.4, for example, the
corresponding free flight length is 0.4 X25=10 period of the
active layers, roughly half the distance to the electrode. One
of the reasons for the lower gain in the QDWIP is the in-
creased capture rate. The QDWIP has obviously a thicker
active region compared to QWIP, and this will increase the
capture rate as reported in Ref. 14. In addition, the fit results
are an indication that traps could be the origin of the lower
gain. In modern growth technology, a planar QWIP generally
has good crystal quality, and a QDWIP might have relatively
lower quality. This is especially true of our QDWIPs grown
by metal-organic chemical-vapor deposition (MOCVD) in-
stead of molecular beam epitaxy (MBE). Thus traps in the
structures can reduce the gain and cause a nonlinear bias
dependence.

In a situation as in Ref. 25 with detection wavelengths
~8 um, where the responsivity keeps on going up with bias
and there is no apparent saturation, the authors were talking
in terms of avalanche processes and avalanche noise
contributions.?>?” This is clearly not the case for our devices
because the responsivity saturates above about 2 V. However,
hot carrier electron-electron relaxation in the subbands could
also be a source of noise and this should be investigated by
measuring doping dependence.

The QDWIP introduces a bound excited state into the well
and introduces at least one additional ground localized level
inside the QD. This increases the number of pathways for
recombination into the ground QD/QW bands. The actual
band structure of this class of QDs in the well devices (QD-
WIP) is quite unlike the traditional QDIP,'>?® or even QD in
well devices of Refs. 5 and 6 for example. In the present
category of InAs/InGaAs devices, we are dealing with a very
low (InAs/InGaAs conduction-band offset) confinement po-
tential of ~90 meV in the QDs. The implication is that we
have one bound level and the rest are QW-like bands. Nor-
mally at low temperatures, the bound level is doubly occu-
pied and the remaining carriers are in the QW-like bands.
Here we have 10'8/cm? doping in a 3.5 nm QW so that there
are at least five electrons per QD unit. This system is there-
fore truly a hybrid, and charges can flow from the QW bands
in and out of the QD bound level relatively freely.

VII. TIME DEPENDENCY OF EXCITED CARRIERS
IN A QWIP
A. Time decay in the case when m=1, i.e., b=a

As an illustration of the power of the method, we use Eqs.
(12) or (13) to calculate the time dependence of the number
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of survivors ng(r) for m=1 by elementary algebra and find
for pulsed generation, i.e., G(p)=1. Here,

ngld) = {l _eat W, (a’+b’)/2}e-aﬂ

2 a,—b,

. {% . g4+ W;t—_((lz),t+ b,)/2 }e_btt’ (30)
2a,=2W,+ &, — [4W> + &3], (31)
2b,=2W, + &, +[4W2 + &3], (32)

W,= W+ W, (33)

(l‘) 1 + (— SA) + 2Wt _at
n =\<T+—F 5 ,5(e "
4 2 2[4W! + &3]

1 —&4)+2W,
s et G
2 2[4WP+ 2]

(t) {1 8A+2Wt }—at
nglt) =Y+ "5 5, (¢ "
2 2f4W; + 5]
1 8A+2Wt bt
O e vl 35
2 204w+ 5] 53

The time decay of the particle is not as trivial as one might
think. The long-time behavior is in the first term with decay
rate constant,

) Vg, _m _(Ud>2+(m)21/2
" m || eqa, m+l £4a,, m+ 1 '

(36)

One can see that the first term inside the square bracket is
what some people define as the inverse capture probability
Eq. (24) when it is >1. The time decay can in principle be
measured using a very fast laser pulse or terahertz absorption
techniques. The full 3D decay is given by Eq. (29) with Eq.
(34) for the z direction. In a low defect sample, Eq. (34) is
the dominant process.

B. Time dependence in the drift limited regime

If we consider m>1, and pure drift, then we make the
corresponding replacements W,— W*—v,/am and replace
g4/2 with g4/(m+1) in Eq. (34). The long-time behavior is
determined by the first term in Eq. (36).

VIII. SUMMARY AND CONCLUSIONS

We have presented a more rigorous theory of transport
and recombination, which is applicable to QWIPs, QDWIPs,
and nanopillar QWIPs. Let us summarize the findings.

In QWIPs we have considered the usual QWIP model and
our result agrees with the standard results in the (physically
relevant) high-field drift limited Eq. (23) regime. The effect
of diffusion is neglected in the standard treatments of gain.
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This is reasonable when we have order, but not so when we
have disorder or more complex QWIP structures. The present
method always refers to quantum-mechanical rates and not
to classical probabilities. Our method, which includes trap-
ping, shows more clearly how the gain depends on electric
field and temperature. Diffusion adds far more complexity to
the results as can be seen from Eq. (A1). We have solved the
m=2 case exactly to demonstrate this. The time dependence
of the photoconductivity in the drift limited limit has been
solved. This is an important result for the study of the time
dependence of the pulsed photocurrent and will be used later
when data are available.

The theory was applied to experiments on QWIP and QD-
WIPs. The gain was extracted using the GR noise formalism.
The GR noise formula Eq. (5) only has a limited region of
validity and this must be checked each time. In the present
system, the low-temperature noise is dominated by Johnson
noise and does not follow the GR formula in the low bias
region. The gain data for the QWIP are linear in bias but the
QDWIP gain data have nonlinear bias dependence. This is

1+ W+ W +g,) + (W + W)
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proof that traps must have been introduced in the QDWIP
structures. In our devices, deviations from the standard GR
noise at high bias, we believe, is due to intervalley crossing
and optic phonon emission. Unfortunately there is no theo-
retical formalism to describe this type of noise at present. We
suggest that one good way is to include it in a Monte Carlo
simulation. When avalanching contributes to the photocon-
ductivity as in Ref. 26, the additional noise has been consid-
ered in Ref. 27. Intersubband avalanche contributions to the
noise depends on the doping level and can be studied by
varying the degree of doping in the active layers.

APPENDIX: THE RECOMBINATION TIME FOR m=2

If m>1, the exact result becomes very complicated in
comparison to the pure drift limit. For example, when the
barrier region is twice as long, m=2, we have instead in
Eq. (11) the exact result with back diffusion and for m=2
we have

B

- (W + W)W+ W +e,) - WW =S[(W)2+ W (W + W +g,)]

(W_SA)

(A1)

S=1-

W+ WO)L(Wr+ W +e)]-WW’

(A2)

which gives back the very simple result 753=3/g4+2/W*, when W™ =0 in Eq. (26).
The complexity occurs because the solution now takes into account the fact that there is diffusion and drift.
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